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Boundary-layer flow along a ridge:
alternatives to the Falkner–Skan solutions

By Peter W. Duck1, Simon R. Stow1† and Manhar R. Dhanak2

1Department of Mathematics, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

2Department of Ocean Engineering, Florida Atlantic University,
Boca Raton, FL 33431, USA

We consider the laminar boundary-layer flow past a semi-infinite plate with a stream-
wise ridge. We seek similarity solutions to the problem, when the freestream velocity
takes the form x∗n, where x∗ denotes the distance from the leading edge of the plate;
such solutions may exist if the transverse and lateral scales of the ridge develop in
the streamwise direction at the same rate as the boundary-layer thickness grows. In
deriving the necessary far-field boundary conditions for these calculations, we are
led to a consideration of a class of flows of the Falkner–Skan type, but which may
possess a cross-flow component of velocity (which grows linearly in the cross-flow
direction). This new class of flow is a three-dimensional alternative to the Falkner–
Skan family. Wall transpiration effects are also addressed and portions of the solution
curves correspond to separated flows. Solutions for the flow along a ridge for both
the aforementioned classes of far-field behaviour are presented.
A study of the effects of relaxing the similarity constraint on both the classical

solution and new families of solution is also made. It is found that the problem
is (frequently) complicated by the existence of spatially developing eigensolutions
(originating from the leading edge), which have the effect of rendering standard
parabolic marching procedures ill posed.

Keywords: three-dimensional boundary layers; flows along a ridge;
Falkner–Skan; non-uniqueness; similarity solutions

1. Introduction

The Falkner–Skan family of solutions (see, for example, Rosenhead 1966) represents
one of the key building blocks of classical boundary-layer theory. Freestream veloc-
ities which vary algebraically in the streamwise direction encompass a broad spec-
trum of both theoretically and practically important configurations. It is well known
that for freestream velocity variations of the form x∗n (x∗ representing the stream-
wise coordinate, origin at some leading edge), non-uniqueness of two-dimensional,
similarity-type, boundary-layer solutions occurs for n < 0, with two solutions in the
range n0 < n < 0, where n0 ≈ −0.0904 (as determined by Hartree (1937)), there
being no (connecting) solutions for n < n0. One of the two solutions corresponds to
entirely forward flow, the other to partly reversed flow. In the limit n → 0−, the

† Present address: Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
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latter solution corresponds to a massively displaced shear layer, lying above a region
of relatively stagnant flow (see Stewartson (1954) and also Duck et al . (1999), which
is hereafter referred to as DSD).
In a recent study, Dhanak & Duck (1997) (hereafter referred to as DD) found that

non-uniqueness in similarity solutions to three-dimensional corner boundary-layer
flows was quite common. In particular, DD found that for freestream velocity vari-
ations of the form x∗n with imposed symmetry about the line bisecting the corner
angle, at least two similarity-type solutions exist for n > −0.018 (approximately). In
fact, for n < 0 and |n| � 1, four solutions were found; these observations confirmed
and extended those of Ridha (1992). In the case of flows not possessing the afore-
mentioned symmetry condition, the overall picture can be even more complicated,
with the possibility of additional solutions.
One of the key observations of DD is that in the case of zero streamwise pressure

gradient flows over a flat plate (i.e. n = 0 in the above notation), in addition to
the classical Blasius solution, a second, three-dimensional solution is also possible in
which the cross-flow velocity takes the form of a jet-like motion, accelerating linearly
in the cross-flow direction. Although this conclusion was found in the context of
corner boundary layers (with the imposed symmetry condition), in the special case
of n = 0 these conclusions are also applicable to the class of flows with zero cross-flow
at the outer edge of the boundary layer; this may be partly regarded as a corollary. It
is this observation that provides the impetus for this paper, namely to study three-
dimensional boundary-layer flows over non-flat surfaces. Flows of this new type may
be regarded as a useful and important extension (and in many cases an alternative)
to the Falkner–Skan–Cooke family of solutions (the latter class having no cross-flow
variation). As such, flows of the type considered here are likely to be useful in the
context of wing–body junctions, for example.
To illustrate the applicability of these (similarity) solutions, we consider the lam-

inar boundary-layer flow over a streamwise surface ridge, the transverse and lateral
dimensions of the ridge being comparable with the boundary-layer thickness; the
similarity constraint is retained in this respect. This problem is formulated in § 2. In
§ 3 we consider the nature of the solution at large distances from the ridge, which,
just as in DD, is important both in determining accurate far-field boundary condi-
tions and in understanding the nature of the various solution branches. In § 4 we
present numerical solutions to the problem as formulated in § 2. In § 5 we discuss
our conclusions and raise some further issues, in particular the nature of the flow
with the similarity constraint relaxed (i.e. streamwise developing flows). In DSD it
was found that the corresponding solutions related to corner-flow problems were fre-
quently greatly complicated by the existence of spatial eigenvalues, originating from
the leading edge (i.e. x∗ = 0). These render standard parabolic marching schemes
inappropriate (in particular these are ill posed under these circumstances). In the
present study we find that the occurrence of such leading-edge eigensolutions is also
quite common. We give details of circumstances when these exist.

2. Formulation

The schematic of the problem to be considered is shown in figure 1. We take a system
of Cartesian coordinates (Lx,Ly, Lz), where L is a reference length-scale (generally
the spatial scale of the freestream velocity variation). For x > 0 we assume that
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Figure 1. Schematic of the problem.

some (non-planar) surface lies in the path of the freestream flow (the leading edge of
the surface is taken to be straight, and lies along x = 0). If the plate distortions are
finite in the longitudinal extent (the situation we shall be focusing on in this paper),
then it is convenient to choose the flat, undistorted surface to coincide with the
plane y = 0, and with the cross-flow direction corresponding to the z-direction. The
velocity is written as U∞(u, v, w), such that at the outer edge of the boundary layer
(that develops on the plate) the velocity in the streamwise (x) direction is written
U∞F (x). We define the Reynolds number Re = (U∞L)/ν, and assume that the
ridge is of height O(LRe−1/2) and the cross-flow scale is of the same order, leading
to transverse and cross-flow velocities of O(U∞Re−1/2); ν represents the kinematic
viscosity (assumed to be constant).
We expect that the boundary layer developing from the leading edge (x = 0) takes

on the following asymptotic form as Re → ∞ (guided by the corner-flow works of
Rubin (1966) and by DD and DSD):

u = Û(x, Y, Z) + · · · ,
p = P0(x) +Re−1/2P1(x) +Re−1P̂ (x, Y, Z) + · · · ,
v = Re−1/2V̂ (x, Y, Z) + · · · ,
w = Re−1/2Ŵ (x, Y, Z) + · · · ,




(2.1)

where ρU2
∞p denotes the pressure, and ρ is the density (assumed to be constant so

that the fluid is regarded as incompressible). In (2.1) we have also introduced scaled
transverse and cross-flow coordinates, namely Y = Re1/2y, Z = Re1/2z, and P0 and
P1 can be shown to be independent of Y and Z.
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Substitution of (2.1) into the Navier–Stokes and continuity equations, and taking
the leading-order terms gives

Û Ûx + V̂ ÛY + Ŵ ÛZ = ÛY Y + ÛZZ − P0x
, (2.2)

Û V̂x + V̂ V̂Y + Ŵ V̂Z = V̂Y Y + V̂ZZ − P̂Y , (2.3)

ÛŴx + V̂ ŴY + ŴŴZ = ŴY Y + ŴZZ − P̂Z , (2.4)

Ûx + V̂Y + ŴZ = 0. (2.5)

The boundary conditions are that Û = Ŵ = 0, V̂ = V̂w(x, Z) on the wall (which
is taken to lie along Y = H∗(x, Z), the ridge profile), and Û → F (x), Ŵ → 0 as
Y → ∞; the Vw term admits the inclusion of transpiration through the surface.
The condition on Û as Y → ∞ leads to the condition that the leading-order pres-

sure gradient is given by P0x = −FFx, while the O(Re−1) pressure term, although
of relatively small order, is vital here to leading order, just as in Rubin (1966), DD
and DSD.
For most of this paper we focus our attention on similarity-type solutions corre-

sponding to F (x) = xn, (following DD). To be consistent with this, we write

Û = xnU(η, ζ), (2.6)

V̂ = x(n−1)/2V (η, ζ) =
x(n−1)/2

√
2

[(1− n)(η +H(ζ))U − Φ], (2.7)

Ŵ = x(n−1)/2W (η, ζ) =
x(n−1)/2

√
2

[(1− n)ζU − Ψ ], (2.8)

P0 = −1
2x

2n, P̂ = xn−1P (η, ζ), (2.9)

where

η = Y/
√
2ξ − H(ζ), ζ = Z/

√
2ξ, ξ = x(1−n)/2, (2.10)

and where H∗(x, Z) = x(n−1)/2H(ζ) and V̂w(x, Z) = x(n−1)/2Vw(ζ), for consistency
with the similarity form. The Φ(η, ζ) and Ψ(η, ζ) serve as vector potentials, and
(η, ζ) form a system of body-fitted coordinates, such that the plate surface lies along
η = 0. The boundary-layer equations (2.2)–(2.5) may then be manipulated into the
following form:

2U = Φη + Ψζ − H ′Ψη, (2.11)

(1 +H
′2)Uηη + Uζζ − 2H ′Uηζ − H ′′Uη + 2n = 2nU2 − ΦUη − Ψ(Uζ − H ′Uη),

(2.12)

(1 +H
′2)θηη + θζζ − 2H ′θηζ + 2(1− n2)[(η +H)U(Uζ − H ′Uη)− ζUUη]

+ Φθη + Ψ(θζ − H ′θη) + 2Uθ − H ′′θη = 0, (2.13)

where in the above we have introduced a streamwise vorticity function, namely

θ = Ψη − Φζ +H ′Φη. (2.14)

The boundary conditions to be applied to this system are

U = Ψ = 0, Φ = Φw on η = 0, (2.15)
U → 1, Ψ → ζ(1− n) as η → ∞, (2.16)
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where Φw = −√
2V ∗

w . Note that the condition (2.16) arises from the condition that
there is no cross-flow velocity component in the freestream.
In the following section we consider limiting forms of the system (2.11)–(2.14) valid

at large distances from the distortion, assuming surface distortions of finite extent
in the cross-flow (ζ) direction.

3. Solutions for |ζ| → ∞
In the work on corner boundary layers of DD and DSD it was found that the nature
of the solution at large distances from the corner was absolutely crucial in

(i) determining accurate far-field (boundary) conditions to the full problem, and

(ii) understanding the nature of various solution branches.

In the present study, this is equally true. To this end, following these previous studies,
we expect that as |ζ| → ∞:

U(η, ζ) = U0(η) + ζ−1U1(η) +O(ζ−2),

Φ(η, ζ) = Φ0(η) + ζ−1Φ1(η) +O(ζ−2),

Ψ(η, ζ) = ζΨ0(η) + Ψ1(η) +O(ζ−1),

θ(η, ζ) = ζθ0(η) + θ1(η) +O(ζ−1),

W (η, ζ) = ζW0(η) +W1(η) +O(ζ−1).




(3.1)

Taking the leading-order terms from (2.11)–(2.14) in this limit leads to the following
set of equations

2U0 = Φ0η + Ψ0, (3.2)

U0ηη + 2n = 2nU2
0 − Φ0U0η, (3.3)

θ0 = Ψ0η, (3.4)
θ0ηη − 2(1− n2)U0U0η + θ0ηΦ0 + Ψ0θ0 + 2U0θ0 = 0. (3.5)

The boundary conditions to be applied are

U0(0) = Ψ0(0) = 0, Φ0(0) = g(0) = Φ0w = Φw(ζ → ∞), (3.6)
U0 → 1, θ0 → 0, Ψ0 → Ψ0e as η → ∞. (3.7)

The term g(0) has been introduced here as a measure of the transpiration. We
have assumed implicitly that as |ζ| → ∞:

(i) H(ζ) = o(ζ−2) (although other, slower rates of function decay, and even certain
classes of growth, could, in principle, be accommodated into the model);

(ii) the transpiration parameter Φw → g(0) = O(1); and

(iii) Ψ → ζΨ0e, Ψ0e = O(1) as ζ → ∞.

Crucially, it is important to note that although the above has been derived in
the context of the far-field development of the flow past a ridge, its applicability is
considerably broader. In particular, the leading-order system developed above is also
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relevant to a three-dimensional extension to the Falkner–Skan family of solutions of
the form (where η = Y/

√
2ξ)

u = xnU0(η), v = Re−1/2x(n−1)/2V0(η), w = zxn−1W0(η). (3.8)

The key point is that the cross-flow velocity component is allowed to grow linearly
in the cross-flow direction; the other two velocity components are independent of the
cross-flow coordinate.
The above system is identical to eqns (3.5)–(3.10) of DD, except for the inclusion

of transpiration effects (i.e. g(0)). Further, in DD, although most of the attention
was focused on corner flows with symmetry (corresponding to Ψ0e = 1), some results
were presented in this limiting case for asymmetric flows with specified secondary flow
direction along the corner-bisector line (a parameter λ was introduced).† Here, an
alternative class of flows will be sought for whichW (η → ∞) → 0, which corresponds
to zero cross-flow velocity external to the boundary layer (at least to leading order),
which, in the present context, leads to the condition that Ψ0e = 1 − n, or, in the
notation of DD, λ = n+ 1.
It was noted in DD that one solution of the above system is

U0 = F ′
0(η), Φ0 = (n+ 1)F0(η),

Ψ0 = (1− n)F ′
0(η), θ0 = (1− n)F ′′

0 (η),

}
(3.9)

where

F ′′′
0 + 2n = 2nF ′2

0 − (n+ 1)F0F
′′
0 , (3.10)

which is the Falkner–Skan equation (Rosenhead 1966). In the context of DD, this
particular solution was only useful when n = 0, i.e. the zero-pressure-gradient case
corresponding to the Blasius equation, on account of the symmetry constraint; in the
present context, this is a perfectly useful far-field solution, yielding zero cross-flow
velocity outside of the boundary layer as required (zero cross-flow velocity across
the entire boundary layer in fact). However, in DD, for n = 0 a second solution was
also found, comprising a cross-flow jet-like motion. A corollary of this is that such
solutions, also involving a non-zero jet-flow motion, are likely to occur for other values
of n. The system (3.2)–(3.7) was, therefore, computed, using both Runge–Kutta and
finite-difference techniques.
We now consider the effect of varying the parameter n, with g(0) fixed; these results

are shown in figure 2–4. Let us first focus our attention on the zero-transpiration case
(figure 2). We see that generally, over the range of values of n shown, two distinct
solution branches exist. One of these is the well-known two-dimensional Falkner–Skan
solution family (Rosenhead 1966), for whichW0 ≡ 0, which must be characterized by
having θ0(η) ≡ (1− n)U0η(η), on account of (2.8) and (3.9). A second main solution
family also exists, which is fully three dimensional in nature. For n = 0, the solutions
here coincide precisely with the corner-flow solutions of DD and DSD. Additionally,
in the particular case of n = 1, the two-dimensional solution is the classical Hiemenz
solution (Rosenhead 1966), the other corresponds to the three-dimensional solution
found by Davey & Schofield (1967) and Schofield & Davey (1967). The significance

† Note the typographical error in eqn (3.13) of DD, which should read Φ0η → 2 − λ, Ψ0 → λ as
η → ∞.
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Figure 2. Solution curves: (a), (c) and (e) g(0) = −0.5; (b), (d) and (f) g(0) = 0.

of the solid and dashed lines will be explained later (in § 5). A selection of profiles
for U0(η) and W0(η) for these main solution branches is shown in parts (a) and
(b) of figure 5, respectively (noting that we must of course have W0(η) ≡ 0 for the
two-dimensional solution family). Non-uniqueness of the two-dimensional Falkner–
Skan family of solutions is quite well known (Craven & Peletier 1972; Oskam &
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Figure 3. Solution curves: (a), (c) and (e) g(0) = −1; (b), (d) and (f) n(g(0) = −0.75).

Veldman 1982), although these previous additional solution profiles are generally
oscillatory in nature, at extreme values of n (n < 0 or n > 1), and are therefore
unlikely to be realized in practice. The distributions of the velocity components
as shown in figure 5 suggest entirely plausible velocity profiles for the additional

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Boundary-layer flow along a ridge 3083

−0.5

0

0.5

1.0

−1

1

2

0

−1.0

−2.0
0 0.4 0.8 0 0.6

0

−1

−2

−3

0

1

2

3

4

−1

1

2

W
0 

  (
   

=
 0

)
η

η
U

0 
  (

   
=

 0
)

η
η

0 
( 

  =
 0

)
η

θ

(a) (b)

(c) (d)

(e) ( f )

−1

−0.5

−1.5

0

0

1.5

2.0

n n

0 0.4 0.8 0 0.6
n n

0 0.4 0.8 0 0.6
n n

Figure 4. Solution curves: (a), (c) and (e) g(0) = 0.456 58; (b), (d) and (f) g(0) = 1.

(three-dimensional) mode; note in particular the jet-like profile of the cross-flow. The
distributions shown in these figures suggest that the reversed flow family of solutions
involves a displaced shear layer; DSD suggested that in these regimes these layers
become further displaced as n → 0, i.e. as the origin is approached in the g(0) = 0
results in figure 2. In addition to the two main solution branches, there also exists a
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Figure 5. (a) Streamwise velocity profile (ζ → ∞) and (b) cross-flow velocity profiles (ζ → ∞).
A, n = 1, two dimensional; B, n = 1, three dimensional; C, n = 0, non-Blasius (three dimen-
sional); D, n = 0, Blasius (two dimensional); E, n = −0.1, three dimensional (non-reversed);
F, n = −0.05, two dimensional (non-reversed); G, n = −0.1, three dimensional (reversed); H,
n = −0.05, two dimensional (reversed).

small looped branch for −0.0129 · · · < n < 0, implying six solutions to the problem
for n = 0−. Notice that one portion of this solution branch has θ0(η = 0) < 0, the
other has θ0(η = 0) > 0, while both portions have U0η(η = 0) < 0, corresponding to
reversed flows. In the limit as n → 0−, the four lower solution branches take on the
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general form of a massively displaced shear layer, with a normal transpiration velocity
on the lower edge of the shear layers, in the terminology of DSD corresponding
to C2D, C3Da or C3Db. The first of these is the well-known Chapman (1950) shear
layer, the others being three-dimensional counterparts to this. In particular the shear
layer associated with the two-dimensional solution is directly linked to C2D, while
for the small solution branch, the shear layer identified by having θ0(η = 0) > 0
together with the main three-dimensional solution branch are linked with the shear
layer associated with C3Da; the remaining small branch limiting solution (identified
by exhibiting θ0(η = 0) < 0) is linked to C3Db. Note too that the main solution
branches cross (and are instantaneously identical) at n = 0.167 . . . in this case. As
the parameter g(0) is decreased from zero (implying wall blowing; see figures 2 and 3),
the small loop branch disappears, and also the two-dimensional and, subsequently,
the three-dimensional solutions cease to exist for n < 0, the former occurring at
g(0) = −C2D, the latter occurring at g(0) = C3Da. As g(0) is increased above zero
(corresponding to wall suction), we see from figure 4 that the crossing point of the two
solution branches occurs at progressively smaller values of n, until at n = 0.456 58 . . .
the coincidence point is at n = 0.
As g(0) increases further, the two main solution branches remain separated, and

the small loop solution also remains in existence. Note too that (in the light of the
results of DD) other solution branches at more extreme values of n are also likely to
exist.
It is straightforward to show that all these solutions are characterized by the

condition

θ0η(0) = 2n2 − 2n − θ0(0)g(0). (3.11)

This is in contrast to the family of solutions (symmetrical about the line η = ζ),
considered by DSD, which were characterized by the condition

θ0η(0) = n2 − θ0(0)g(0). (3.12)

In the case of n = 0, it is confirmed that the problem considered here is identical
to the corner-flow problem, as considered by DD and DSD. Finally, if there is no
cross-flow at the outer edge of the boundary layer, as here, then the second-order
terms in (3.1) are all zero.

4. Numerical scheme: full problem

We adopt a solution strategy similar to that used successfully in DD. Briefly, this used
a second-order finite-difference scheme with standard successive relaxation methods,
with the far-field (ζ → ∞) conditions being determined from the results of the
previous section. Typically we took a grid size in the cross-flow direction of ∆ζ = 0.1
extending out to ζ = ζ∞ = 20, and a grid in the normal direction of ∆η = 0.025
extending out to η = η∞ = 20.
We focus our attention on surface distortions of the form H(ζ) = αe−ζ2

(where α
is a constant), enabling symmetry to be invoked at ζ = 0, and on zero freestream
pressure gradient cases, i.e. n = 0, with no wall transpiration. For this choice of
parameters, we note from figure 2 that there are two alternative far-field (ζ → ∞)
conditions that may be imposed, namely Blasius flow or its three-dimensional ‘cousin’
(which we will refer to as the non-Blasius solution).
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Figure 6. (a) Streamwise surface shear stress. (b) Cross-flow surface shear stress.
(Solid lines denote Blasius far-field; dashed lines denote non-Blasius far-field.)

Figure 6a, b shows the distributions of streamwise and cross-flow components of
wall shear stress corresponding to the two, alternative far-field flows, for α = ±2; in
these figures we have denoted flows corresponding to Blasius far-field conditions by
solid lines, and non-Blasius far-field conditions by broken lines. Indeed, the differences
between the Blasius and non-Blasius far-field flows are easily discernible in figure 6b,
showing the cross-flow shear stress; in the latter case these distributions are clearly
seen to grow linearly with ζ. The indentation (α = −2) results show that close to
the surface distortion there is a decrease in the streamwise shear stress (indicating
the flow to be on the verge of separation); the converse is true for the α = 2 results.
Parts (a) and (b) of figure 7 show the secondary velocity vectors for the Blasius and

non-Blasius far-field conditions, respectively, for α = −2; in both cases, the vertical
scale is taken to be η + H(ζ), which is a better reflection of the true, physical,
transverse coordinate than η. Both sets of results indicate a general drift of flow
upwards (in spite of the indented nature of the surface, boundary-layer displacement
effects must dominate here) and away from the distortion. The non-Blasius far-field
case (figure 7b) exhibits the distinct, linearly increasing, jet-like profile as ζ increases,
as alluded to earlier. In this case, fluid for this effect is clearly being entrained from
the streamwise flow, which experiences a stronger retardation than in the case of
Blasius flow in the far-field, as evidenced by comparison of the streamwise wall shear
stresses between the two cases.

5. Discussion and further issues

In this paper we have focused our attention on self-similar solutions of the fully three-
dimensional flow past a ridge. The non-uniqueness present in corner-flow boundary
layers, discussed by DD and DSD, seems, in the light of the present study, not to
be an isolated phenomenon, although the particular details are somewhat different;
the suggestion here is that non-uniqueness in the context of boundary-layer flows is
perhaps a much more common phenomenon than previously thought. Importantly,
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Figure 7. Secondary velocity vectors, n = 0 ((a) Blasius solution as ζ → ∞ and
(b) non-Blasius solution as ζ → ∞), α = −2.

the non-uniqueness revealed in the far-field study is wholly independent of any ridge
profile, and hence is a totally generic phenomenon.
One question that arises is the nature of the spatial variation of the solution in

non-similarity cases (i.e. when F (x) = xn). In the corner-flow study of DSD it was
found that standard, parabolic-type marching procedures were frequently ill posed,
due to the existence of eigensolutions emanating from the leading edge. This turns
out to be equally true here.
Specifically, let us consider the |ζ| � 1 similarity solution described in § 3. We

seek eigensolutions to the flow by writing the solution in the neighbourhood of ξ = 0
in the following form (as well as in Libby & Fox (1963), Chen & Libby (1968) and
DSD, this type of approach is also suggested in the work on hypersonic boundary
layers by Neiland (1970), Mikhailov et al . (1971) and Brown & Stewartson (1975)):

U0(ξ, η) = U00(η) + ξλũ+ · · · , Φ0(ξ, η) = Φ00(η) + ξλφ̃+ · · · ,
Ψ0(ξ, η) = Ψ00(η) + ξλψ̃ + · · · , θ0(ξ, η) = θ00(η) + ξλθ̃ + · · · .

}
(5.1)
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Substitution of these into the extended form of (3.2)–(3.5) (allowing for non-
similarity effects; see eqns (2.36)–(2.39) of DSD) leads to the following system deter-
mining the perturbation quantities:

2ũ+ (1− n)λũ = φ̃η + ψ̃, (5.2)

ũηη = 4nU00ũ+ λ(1− n)U00ũ − φ̃U00η − ũηΦ00, (5.3)

θ̃ = ψ̃η, (5.4)

θ̃ηη − (1− n2)[U00ũη + ũU00η] + θ̃ηΦ00 + θ00ηφ̃+ θ00ηφ̃+ ψ̃θ00

+2ũθ00 + Ψ00θ̃ + 2U00θ̃ + (n − 1)λ{−θ00ũ+ U00θ̃ + ψ̃U00η} = 0, (5.5)

subject to the boundary conditions

ũ(0) = φ̃(0) = ψ̃(0) = 0, ũ, ψ̃, θ̃ → 0 as η → ∞. (5.6)

Here, the subscript 00 terms correspond precisely with the subscript 0 quantities
considered in earlier sections of the paper. The system (5.2)–(5.6) was then tackled
using two (independent) methods just as in DSD, namely

(i) a second-order finite-difference scheme, with the complete resulting homoge-
neous system being solved by a QZ algorithm; and

(ii) a local search routine, based on a fourth-order Runge–Kutta scheme.

Our modus operandi was to use (i) to provide initial estimates/starting values, and
then (ii) to obtain refined estimates for the eigenvalue λ.
These computations generally yielded (just) real values of λ (i.e. λr). Figure 8 shows

the variation of (1−n)λr with n (it turns out that this quantity is rather more relevant
to physical x-space than λr alone, on account of (2.10), and also remains bounded
as n → 1). In figure 8 we focus our attention solely on the main solution branches,
for the zero transpiration case, g(0) = 0. For values of n > 0.167 . . . (i.e. beyond the
crossover point in figure 2), we find the two-dimensional branch only exhibits negative
values of λr (in this regime, only the eigenvalue of smallest magnitude is shown),
while for the three-dimensional branch there exists one real, positive eigenvalue (and
many real, negative eigenvalues). The effect of this one eigenvalue is to indicate the
existence of leading-edge eigensolutions, which render initial-value-type approaches
to any spatially developing problem, based on these solutions, inappropriate. For
n < 0.167 . . . , we see that there is a change-over: it is the two-dimensional solution
branch that possesses the real and positive eigenvalue, while the three-dimensional
solution branch only possesses eigenvalues with λr < 0 (again, only the eigenvalue
of smallest magnitude is shown in this regime on figure 8). Note that although the
λr < 0 eigenvalues have no relevance in the context of the leading-edge solution,
nonetheless they are responsible in controlling the far-downstream development of
solutions.
Intriguingly there is a further complexity which arises as soon as flow reversal

occurs, namely where U0η(η = 0) < 0; in these regimes we see many (probably an
infinite number of) positive eigenvalues, for both two- and three-dimensional cases.
This property seems entirely reasonable, given that the nature of the boundary-layer
flow is likely to be elliptic in these regimes, and the multiplicity of leading-edge
eigensolutions reflects this ellipticity.
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The significance of the solid and broken lines in figures 2–4 can now be revealed:
namely that the solid lines refer to solutions which do not possess any positive λr, and
hence solutions developing away from these similarity forms may be treated in the
classical ‘initial-value’ fashion; the broken lines correspond to regimes which possess
at least one positive λr.
From these, and all other computations performed to date, the following general

trends emerge.

(1) For each value of n, at most only one solution does not possess a positive
eigenvalue λr.

(2) It is the solution with the most positive value of U0η(η = 0) that possesses only
negative values of λr.
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(3) In cases of flow reversal, i.e. U0η(η = 0) < 0, many (probably an infinite number
of) positive λr exist.

The existence of these growing, leading-edge eigensolutions therefore has serious
repercussions for treating the spatial development of solutions subject to three-
dimensional disturbances (including, intriguingly for Blasius flow). However, the
authors have successfully undertaken a number of computations involving spatially
developing flows of this type, involving growing, leading-edge eigensolutions, using
the quasi-elliptic approach described by DSD; these results are not shown here, but
are qualitatively similar to the corner-flow results shown in DSD.

The authors gratefully acknowledge the support of NATO and the EPSRC.
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